EPPS 2302: QUIZ \#2

To get full credit for your answer, you must show your work. Use the space provided on this sheet to show your work.

Problem 1(20pt)

1 Suppose that E and F are two events and that $\mathrm{P}(\mathrm{E}$ and F$)=0.48$ and $\mathrm{P}(\mathrm{E})=0.5$. What is $\mathrm{P}(\mathrm{F} \mid \mathrm{E})$?

```
P(E and F) = P(E)*P(F|E). -> 0.48=0.5*P(F|E)
P(F|E) = 0.96
```

2 Suppose that E and F are two events and that $\mathrm{P}(\mathrm{E})=0.4$ and $\mathrm{P}(\mathrm{F} \mid \mathrm{E})=0.8$. What is $\mathrm{P}(\mathrm{E}$ and F$)$?
$P(E$ and $F)=0.32$

Problem 2(20pt)

The managers of a corporation were surveyed to determine the background that leads to a successful manager. Each manager was rated as being either a good, fair, or poor manager by his/her boss. The manager's educational background was also noted. The data appear below. Given that a manager is only a fair manager, what is the probability that this manager has no college background?

Educational Background

Manager Rating	H. S. Degree	Some College	Collegle Degree	Master's or Ph.D.	Totals
Good	8	3	22	6	39
Fair	7	11	44	25	87
Poor	2	4	1	27	34
Totals	17	18	67	58	160

$P($ no college | Fair $)=P($ no college and Fair $) / P($ Fair $)$
7/87

Problem 3(10pt)

If $\mathrm{P}(\mathrm{A})=1 / 3, \mathrm{P}(\mathrm{B})=1 / 2$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=3 / 4$, Find $\mathrm{P}\left(\mathrm{A}^{c} \cap \mathrm{~B}\right)$

$1 / 2-1 / 12=5 / 12$

Problem 4(20pt)

Determine the area under the standard normal curve that lies between:
$1 \mathrm{z}=1$ and $\mathrm{z}=2$
$0.9772-0.8413=0.1359$
$2 \mathrm{z}=0.3$ and $\mathrm{z}=1.4$

$$
0.9192-0.6179=0.3013
$$

Problem 5(20pt)

Assume that the random variable X is normally distributed, with mean $\mu=50$ and standard deviation $\sigma=$ 16.

1 Compute the probability $\mathrm{P}(6<\mathrm{X}<70)$.

$$
\begin{aligned}
& -2.75<z<1.25 \\
& -2.75<z<0=0.497 \\
& 0<z<1.25=0.3944 \\
& 0.497+0.3944=0.8914
\end{aligned}
$$

2 Compute the probability $\mathrm{P}(\mathrm{X}=80)$.

```
We cannot compute it
```


Problem 6(10pt)

Assume that blood pressure readings are normally distributed with a mean of 122 and a standard deviation of 6.4 . If 64 people are randomly selected, find the probability that their mean blood pressure will be less than 124.
$z=\frac{124-122}{\frac{6.4}{\sqrt{64}}}=2.5$
$\mathrm{P}(\mathrm{z}<2.5)=0.9938$

