EPPS 2302 : Practice Problems for Exam2

You already have some practice problems.
Examples in the slide(Important), and previous quizzes(Important).
If you can solve(NOT JUST READ) them without solutions, and understand them(AGAIN, NOT JUST READ) and interpret all tables in the slides, you may not need more practice problems. That's enough for the computation part. AGAIN, YOU NEED STUDY THEM, FIRST.
But, just in case, I add some more(ADDITIONAL problems).
The problems are just practice. Don't expect the same questions or exactly same types

Problems

1) If we have a sample of 12 drawn from a normal population, then we would use as our test statistic
A) t with 11 degrees of freedom B) z with 11 degrees of freedom
C) t with 12 degrees of freedom D) z with 12 degrees of freedom

A
2) Determine the critical value for a left-tailed test of a population standard deviation for a sample of size $\mathrm{n}=21$ at the $\alpha=0.05$ level of significance.
A) 10.851 B) 11.591 C) 31.41 D) 32.671

A
3) Determine the test score z for the following situation:

H0: $\mu_{p}=0.23$ versus H1: $\mu_{p} \neq 0.23 ; \mathrm{n}=200 ; \mathrm{x}=52$
1.01
4) Find the test statistic, t, for the following situation (assume the populations are normally):

Claim: $\mu_{1} \neq \mu_{2}$;
$\overline{x_{1}}=17.1, \overline{x_{2}}=19.6, \mathrm{~s} 1=2.3, \mathrm{n} 1=16, \mathrm{~s} 2=1.8, \mathrm{n} 2=12$
$\mathrm{t}=-3.226$
5) Find test score t, to test the hypothesis that $\mu_{1}=\mu_{2}$. Two samples are randomly selectedand come from populations that are normal. The sample statistics are given below. $\mathrm{n} 1=25, \mathrm{n} 2=30$
$\overline{x_{1}}=16, \overline{x_{2}}=14$
$\mathrm{s} 1=1.5, \mathrm{~s} 2=1.9$
4.361
6)

Find the standard error of estimate, se_{e}, for the data below, given that $\hat{\mathrm{y}}=2 \mathrm{x}+1$.

x	1	2	3	4
y	3	5	7	9

0
7) Twelve nursing students are set to graduate and the registration clerk at the nursing school wonders if there is a correlation between a studentẾs age, their GPA and their state board score. She collects data about the 12 students and determines the regression equation to be
State Board $=255+12.7$ Age +4.6 GPA.
What would she expect a 27 year-old student with a GPA of 2.6 to achieve on the state board examination?

610
8) Find slope coefficient and test score for it.

$$
\begin{aligned}
& \boldsymbol{H}_{\mathbf{0}}: \boldsymbol{\beta}_{\mathbf{1}}=\mathbf{0} \text { versus } \boldsymbol{H}_{\mathbf{1}}: \boldsymbol{\beta}_{\mathbf{1}} \neq \mathbf{0} . \\
& \boldsymbol{s}_{\mathrm{e}}=\mathbf{1 . 3 3}, \\
& \begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\boldsymbol{x} & 65 & 70 & 75 & 80 & 85 & 90 & 95 & 100 & 105 \\
\hline \boldsymbol{y} & 8 & 10 & 11 & 13 & 12 & 16 & 19 & 22 & 23 \\
\hline
\end{array}
\end{aligned}
$$

$\mathrm{b} 1=0.383, \mathrm{t}=11.166$
9) Find the test score to test the independence between variables

	Favorite Pastime		
Gender	Reading	TV	Music
Male	12	32	19
Female	10	20	17

E : 12.6, 29.78, 20.62, 9.4, 22.22, 15.38
0.752
10) Fill the blanks

$2,6,12$
11) Fill the blanks
reg y1 x1

Source	S	MS			$\begin{array}{lc} \text { Number of obs }= & 6 \\ F(((1) ?),(2) ?)= & 71.70 \end{array}$	
Model	22.100	22.1004566		Prob > F $\quad=0.0011$		
Residual	1.2328	. 308219178		R -squared		$=$
					Adj R-squared	$=0.9340$
Total \| ((3) ?		4.66666667		Root MSE		$=.55517$
y1	Co	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
x1	. 6027	. 0711802	((5)?)	0.001	. 4051119	. 8003676
_cons	. 8219	. 373272	2.20	0.092	-. 2144513	1.858287

$1,4,23.3333333,0.9472,8.47$
12) Fill the blanks

```
regress api00 mealcat1 mealcat2 mealcat3
note: mealcat2 omitted because of ((1) ? )
```

Source I	SS	df MS			Number of obs $=400$	
					F (2, 397)	$=((2) ?$
Model \|	6094197.67	2304	098.83		Prob > F	$=0.0000$
Residual \|	1979474.33	397498	. 08143		R-squared	$=0.7548$
					Adj R-squared	$=0.7536$
Total \|	8073672	399202	4.7669		Root MSE	$=70.612$
api00 \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
mealcat1 \|	166.3236	8.708331	19.10	0.000	149.2034	183.4438
mealcat2 \|	0	(omitted)				
mealcat3 \|	-135.0144	8.61209	-15.68	0.000	-151.9454	-118.0834
_cons \|	639.3939	6.146002	104.03	0.000	627.3112	651.4767

collinearity, 611.12

