Matrix and Eigenvalue for EPPS 7370

Determinant and Inverse Matrix

When A is 2×2 matrix(square matrix)

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

$a_{11} a_{22}-a_{12} a_{21}$ is called the determinant of matrix A . It is denoted by $|A|$.

$$
|A|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

For example,

$$
A=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right), \quad|A|=4 \cdot 2-3 \cdot 1=5
$$

Determinant is important to identify if a matrix has an inverse.
Number α has a unique number α^{-1} with the property that $\alpha \alpha^{-1}=1$.
Matrix A can also have an inverse matrix A^{-1} such that $\mathrm{A} A^{-1}=\mathrm{I}$. However, every matrix does not have its inverse. There is a condition for having an inverse matrix.

$$
A \text { has an inverse } \Longleftrightarrow|A| \neq 0
$$

If $|A|=0$, matrix A is said to be singular.

Hence, if

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \quad|A|=a_{11} a_{22}-a_{12} a_{21} \neq 0
$$

then

$$
A^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left(\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right)
$$

Eigenvalue and Eigenvector

Suppose matrix A, vector x and scalar λ with the special property that

$$
A x=\lambda x .
$$

This is very useful. We can easily deal with matrix A, but how about A^{100} ? It will be a big problem.
However, $\quad A x=\lambda x \quad \Longrightarrow \quad A^{n} x=\lambda^{n} x \quad$ can provide us with an easy way to deal with A^{n}. Here. x is called an eigenvector and the associated λ is called an eigenvalue. Now, how to find λ ?

The formula to get λ is

$$
|A-\lambda I|=0
$$

For example,

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right)
$$

According to the formula,

$$
|A-\lambda I|=\left|\begin{array}{cc}
1-\lambda & 2 \\
3 & -\lambda
\end{array}\right|=\lambda^{2}-\lambda-6=0
$$

We can get $\lambda_{1}=-2$ and $\lambda_{2}=3$, which are the eigenvalues of A. Furthermore, we can get eigenvectors with these eigenvalues.

Time Series Application

Suppose an AR model,

$$
\left(\begin{array}{cccc}
1 & -\phi_{1} & -\phi_{2} & \cdots \\
0 & 1 & -\phi_{1} & \cdots \\
\vdots & \vdots & \ddots & \vdots
\end{array}\right)\left(\begin{array}{c}
X_{t} \\
X_{t-1} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
w_{t} \\
w_{t-1} \\
\vdots
\end{array}\right) \Longrightarrow \Phi X_{t}=w_{t}
$$

In the matrix equation, we can rewrite Φ;

$$
\Phi=v \lambda v^{-1}
$$

This is because

$$
\Phi v=v \lambda \Longrightarrow \Phi=v \lambda v^{-1}
$$

As explained above, we can obtain eigenvalues with the given formula.

Now, move the rewritten Φ to the RHS,

$$
X_{t}=v^{-1} \lambda^{-1} v w_{t}
$$

By definition of eigenvalue and eigenvector, stationarity of X_{t} depends on λ^{-1}. When the value is less than $1, X_{t}$ will be stationary. Therefore, we need to use the condition $\left|\frac{1}{\lambda_{i}}\right|<1$ to check stationarity.

Reference :

Essential Mathematics for Economic Analysis
Further Mathematics for Economic Analysis

