EPPS 6313 : Recitation Session #4

Problem 1

Ten cigarettes of brand A had an average nicotine content of 3.1mg with standard deviation of 0.5mg, while eight cigarettes of brand B had an average nicotine content of 2.7mg with standard deviation of 0.7mg.

Test the difference (Assumption : two sets of data is independent)

Problem 2

A researcher believes that children in a certain school have dangerous levels of lead in their blood. Assume the unsafe level is 60.0 parts per million (ppm). Blood tests are performed on a random sample of 229 kids from the school, finding a sample mean of 61.8 and a sample standard deviation of 15. Test the hypothesis that the mean level in the school is above the unsafe level at alpha = 0.05.

Problem 3

Use following data information to test whether there is a difference in the proportion of workers who belong to unions by marital status at the 0.01 level of significance.

- Married : Yes (# is 350, union proportion is 0.21), No (# is 184, union proportion is 0.13)
- Union proportion : 0.18

EPPS 6316 : Recitation Session #4

Problem 1

Interpret the βs . For β_3 , the dependent variable is just Y_i

$$ln(Y_i) = \alpha + \beta_1 x_{1i} + \beta_2 ln(x_{2i}) + \beta_3 \frac{1}{x_{3i}}$$

Problem 2

Which variable has the largest effect on \boldsymbol{Y}

$$Y_i = 37 + (0.4)x_{1i} + (-0.6)x_{2i} + (0.02)x_{3i}$$

Variable	Std .Dev
Y	13
x_1	9
x_2	40
x_3	80

Problem 3

Source	SS	df	MS		Number of obs	=	6
+					F(2, 3)	=	81.42
Model	163.815365	2 81.90	076823		Prob > F	=	0.0024
Residual	3.01796875	3 1.00	598958		R-squared	=	()
+					Adj R-squared	=	()
Total	166.833333	5 33.36	666667		Root MSE	=	1.003
y I	Coef.	Std. Err.	t	P> t	[95% Conf.	Int	cerval]
y	Coef.	Std. Err.	t 	P> t	[95% Conf.	Int	cerval]
y + x1	Coef. 1.172656	Std. Err. .5267192	t 2.23	P> t 0.112	[95% Conf. 	Int 2.	cerval]
y 	Coef. 1.172656 3398438	Std. Err. .5267192 .2260208	t 2.23 -1.50	P> t 0.112 0.230	[95% Conf. 5035992 -1.059143	Int 2. .3	cerval] .848912 3794554
y x1 x2 _cons	Coef. 1.172656 3398438 2.223438	Std. Err. .5267192 .2260208 1.788061	t 2.23 -1.50 1.24	<pre>P> t 0.112 0.230 0.302</pre>	[95% Conf. 5035992 -1.059143 -3.466969	Int 2. .3 7.	cerval] .848912 3794554 .913844

Calculate \mathbb{R}^2 and $\overline{\mathbb{R}}^2$: