I. Short Review

- 1. Covariance and Correlation
 - Covariance : If large value of X will go with large value of Y, and vice versa, the covariance will be positive. $Cov(x,y) = \frac{\sum (x-\bar{x})(y-\bar{y})}{N-1}$.
 - Correlation : In addition to telling you whether variables are positively or inversely related, correlation also tells you the degree to which the variables tend to move together. Pearson's $r = \frac{SP}{\sqrt{SS_x \times SS_y}}$.

- Test correlation : H₀ : ρ (the population correlation) = 0, t = $\frac{r-\rho}{\sigma_r}$, $\sigma_r = \sqrt{\frac{1-\rho^2}{N-2}}$. Dof : N-2, r² : PRE interpretation.

- Partial correlation :
$$r_{xy,z} = \frac{r_{xy} - r_{xz}r_{yz}}{\sqrt{1 - r_{xz}^2}\sqrt{1 - r_{yz}^2}}$$
.

- 2. Regression.
 - Regression(OLS) requires only linear in parameter, but Correlation requires linear in variable as well.
 - $Y = \alpha + \beta X + u$ (Population Regression Function), Y = a + bX + e (SRF) $\widehat{Y} = a + bX : \widehat{Y} = \widehat{Y} + e.$
 - $\begin{array}{ll} & OLS(Ordinary \ Least \ Squares) \ estimator \ for \ \beta \\ & b = \frac{s_P}{s_{S_x}} \ , \ a = \ \overline{Y} b\overline{X} \ . \\ & b : \ In \ the \ sample, \ on \ average \ when \ 1 \ unit \ of \ X \uparrow , \ b \ of \ Y \ change. \\ & Test : t = \frac{b \beta}{\sigma_\beta} \ , \ \sigma_\beta \ = \ \sqrt{\frac{s^2}{ss_x}} \ . \end{array}$

П Problems

1. Calculate covariance and correlation

Cigarettes(X)	Lung Capacity (Y)
0	45
5	42
10	33
15	31
20	29

2. Make a regression equation

3. If someone smokes 30 Cigars, what is your predicted lung capacity?