## I. Short Review

1. Cross Tabulation

- Row and Column marginal : the frequency for one of the two variables, irrespective of the other variable
- Row and Column percentage : $\frac{\mathrm{f}}{\mathrm{N}_{\text {row }}} \times 100, \frac{\mathrm{f}}{\mathrm{N}_{\text {column }}} \times 100$; To compare performance on the dependent variable across categories of the independent variable. Use IV's \%

2. Non-parametric test: $\mathrm{X}^{2}$ (Chi Square)

- One-way $\mathrm{X}^{2}: \mathrm{H}_{0}: \mathrm{X}^{2}=0, \quad \mathrm{X}^{2}=\sum \frac{\left(\mathrm{F}_{\mathrm{a}}-\mathrm{F}_{\mathrm{e}}\right)^{2}}{\mathrm{~F}_{\mathrm{e}}}, \mathrm{DoF}=\mathrm{k}-1\left(\mathrm{k}: \#\right.$ of cell). $\mathrm{X}_{\text {obs }}^{2}>\mathrm{X}_{\text {crit }}^{2}$ : Reject the null
- Two-way $\mathrm{X}^{2}: \mathrm{F}_{\mathrm{e}}=\frac{\mathrm{N}_{\text {row }} \times \mathrm{N}_{\text {column }}}{\mathrm{N}_{\text {total }}}, \quad \mathrm{DoF}=(\mathrm{R}-1)(\mathrm{C}-1)$
- Residual Analysis (Adjusted Residual) : $\mathrm{X}^{2}$ is like Anova, So, Adjusted Residual $=\frac{\mathrm{F}_{\mathrm{a}}-\mathrm{F}_{\mathrm{e}}}{\sqrt{\mathrm{F}_{\mathrm{e}}\left(1-\mathrm{P}_{\text {row }}\right)\left(1-\mathrm{P}_{\text {column }}\right)}}$
- When the expected value in any category is less than 5, use corrections to Chi-Square (Fisher's Exact Test, or Yule's Q).

3. Measure of Magnitude ( $\varphi, \mathrm{C}, \mathrm{V}$ )

- $\Phi($ Phi coefficient $): \sqrt{\frac{X^{2}}{N}} ;$ For $2 \times 2$
- Contingency Coefficient(C):C= $\sqrt{\frac{\mathrm{X}^{2}}{\mathrm{~N}+\mathrm{X}^{2}}}$; For $\mathrm{nxn}(\mathrm{n} \geq 2)$
- Cramer's $\mathrm{V}(\mathrm{V}): \mathrm{V}=\sqrt{\frac{\mathrm{X}^{2}}{\mathrm{~N}(\mathrm{~K}-1)}} ; \mathrm{K}=$ either the number of columns or the number of rows, whichever is smaller.
- It is not test, So when $X_{\text {obs }}^{2}>X_{\text {crit }}^{2}$, Reject the null that $\varphi$ or C or V is 0 in the population
- Scale : 0 : no relationship, $\leq 0.25$ : weak relationship, $0.25 \ll 0.5$ : weak to moderate relationship, $=0.5:$ moderate, $0.5 \ll 0.75:$ moderate to strong, $\geq 0.75:$ strong, $=1:$ Perfect. Ex) In my sample, weak to moderate relationship.

4. Proportionate Reduction in Error (PRE)

- Measure of Association ( $\lambda$ ): $\lambda=\frac{\mathrm{F}_{\mathrm{iv}}-\mathrm{M}_{\mathrm{dv}}}{\mathrm{N}-\mathrm{M}_{\mathrm{dv}}} ; \mathrm{F}_{\mathrm{iv}}=$ the sum of the largest cell frequencies of IV , $\mathrm{M}_{\mathrm{dv}}=$ the largest marginal total of DV ; asymmetrical knowing IV reduced our errors in prediction by $\lambda \%$

П Problems

1. Test the table

## OFFICER TYPE

## Conflict

 Minimizer Control No 90 65USED FORCE?
Yes $10 \quad 35$
2. Calculate measure of magnitude of above table

