I. Short Review

1. Two Sample Proportion Test

If K=2 (# of group), and N₁ and N₂
$$\geq$$
 100, use Z

$$Z_{obs} = \frac{(P_1 - P_2) - (\mu_{\pi 1 - \pi 2})}{\sigma_{\pi 1 - \pi 2}}$$

$$\sigma_{\pi 1 - \pi 2} = \sqrt{P'(1 - P') \frac{N_1 + N_2}{N_1 N_2}} \quad P' = \frac{P_1 N_1 + P_2 N_2}{N_1 + N_2}$$

- 2. Dependent Samples
 - Type : Matched pair samples and Repeated measures -> use t test, but N \geq 30, Z test

test

$$\overline{D} = \frac{\Sigma X_1 - X_2}{N} = \overline{X}_1 - \overline{X}_2 , \ \mu_D = \mu_1 - \mu_2, \ \sigma_{\overline{D}} = \sqrt{\frac{\Sigma D^2 - (\Sigma D)^2 / N}{N - 1}} \times \frac{1}{\sqrt{N}}$$
$$- t_{obs} = \frac{\overline{D} - \mu_D}{\sigma_{\overline{D}}}, \ DoF : N - 1$$

- 3. ANOVA

 - $\begin{array}{ll} & Use \; F \; test \; (\; we \; need \; \alpha \; , \; Two \; DoF) \\ & F_{obs} = \; \frac{MSb}{MSw} \; ; \; MSb = \; \frac{SSb}{DFb} \; , \; MSw = \; \frac{SSw}{DFw} \\ SSb = \; \sum N_i (\overline{X}_i \overline{X})^2 \; , \; SSw = \; \sum (N_i 1)S_i^2 \end{array}$ DFb = K - 1, DFw = N - K
- 4. Two way ANOVA
 - Main effects : If we suspect that the general relationship between our response _ variable and explanatory variable holds across categories of our control variable
 - Interaction effects : If we suspect that the control variable actually alters the nature of the relationship between response and explanatory variables
- 5. Bonferroni Multiple Comparisons and Tukey's Test
 - Bonferroni : comparing specific pair of means. use t test (N is enough large, use Z)

$$t_{obs} = \frac{\overline{X}_1 - \overline{X}_2}{\widehat{\sigma}_{x1-x2}} , \quad \widehat{\sigma}_{x1-x2} = \widehat{\sigma}_{\sqrt{\frac{N_1 + N_2}{N_1 N_2}}} , \ \widehat{\sigma} = MSw$$

For t_{crit} , we need another $\alpha \implies \alpha = \frac{\alpha}{K(K-1)/2}$

- Tukey : individual differences are significant (equal sample size) _ 1st step : make a table to compare mean differences 2^{nd} step : HSD = $q \sqrt{\frac{MSw}{N}}$, 'q' needs K, DFw and α The difference \geq HSD : the difference is significant.
- 6. STATA
 - Interpretation for the outcomes will be covered in the session _

П Problems

Pre test	Post test
225	214
108	103
165	158
130	125

1. Test the difference of Pre and Post test result

2. Fill the blank and Test it

Anova educ race

obs = 999 R-squared = .0078 = 2.96709 Root MSE Adj R-squared= .0058 F Prob > FSource Partial SS df MS -----Model 68.9865278 2 (?) (?) race (?) Residual 8768.38284 996 8.80359723 Total 8837.36937 998 8.85507953