I . Short Review

- 1. STATA
 - Command : mean 'var', ci 'var', ttest 'var' == ' H_0 value'
 - For two sample t test : ttest 'var', by('var')
 - Interpreting the table in STATA will be covered in the session.
- 2. Testing Hypotheses for Difference Between Two Means
 - Step 1: Determine Appropriate Test

$$\begin{array}{l} \text{If } N_1 \text{ and } N_2 \geq 20, \ \overline{x_1} - \overline{x_2} \sim N \ (\mu_{\overline{x_1} - \overline{x_2}} \ , \ \sigma_{\overline{x_1} - \overline{x_2}}). \ \sigma_{\overline{x_1} - \overline{x_2}} = \sqrt{\frac{S_1^2}{N_1} + \frac{S_2^2}{N_2}} \\ \text{If } N_1 \text{ or } N_2 < 20 \ , \ , \ \overline{x_1} - \overline{x_2} \ \sim t \ (\mu_{\overline{x_1} - \overline{x_2}} \ , \ \sigma_{\overline{x_1} - \overline{x_2}}, N_1 + N_2 - 2). \\ \\ \sigma_{\overline{x_1} - \overline{x_2}} = \widehat{\sigma} \ \sqrt{\frac{1}{N_1} + \frac{1}{N_2}} \ , \ \widehat{\sigma}(\text{pooled variance}) = \sqrt{\frac{\left(S_1^2(N_1 - 1)\right) + \left(S_2^2(N_2 - 1)\right)}{N_1 + N_2 - 2}} \end{array}$$

- Step 2: Formulate the Null Hypothesis $H_0: \mu_1 = \mu_2 \text{ or } \mu_1 - \mu_2 = 0 ; H_A: \mu_1 \neq \mu_2 \text{ or } \mu_1 > \text{ or } < \mu_2$
- Step 3: Calculate the Test Statistic $Z_{obs} \text{ or } t_{obs} = \frac{(\overline{x_1} - \overline{x_2}) - (\mu \overline{x_1} - \overline{x_2})}{\sigma \overline{x_1} - \overline{x_2}}$
- Step 4: Find Critical Value (95%) $Z_{crit} = 1.96$ (two tailed test. For one tail : 1.65, sign is important) t_{crit} : Find a value with DoF and $\alpha = 0.05$
- Step 5: Compare Critical to Observed
- Step 6: Decide on Null Hypothesis Reject H₀, and Interpretation.

Π . Problems

1. Fill in the blank (?)

ttest realrinc == 19000	
One-sample t test	
Variable Obs Mean Std. Err. Std. Dev.	[95% Conf. Interval]
realrinc 689 21833.32 788.6 20699.81	(?)
mean = mean(realrinc)	t = 3.5929
Ho: mean = 19000	DoF = 688
Ha: mean < 19000 Ha: mean != 19000	Ha: mean > 19000
$\Pr(T < t) = 0.9998 \qquad \Pr(T > t) = 0.0004$	Pr(T > t) = 0.0002

2. Fill in the blank, and what is the result of the test

Two-sample t test with unequal variances					
Group Obs		Mean	Std. Err.	Std. Dev.	[95% Conf. Interval]
0	351	16850.78	899.9806	16861.13	15080.73 18620.83
1	338	27007.51	1248.421	22951.94	24551.83 29463.18
combined 689 21833.32 788.6 20699.81					20284.97 23381.68
Diff: (? mean) (? Std.err)					
diff = mean(0) - mean(1)				t = (?)	
r r					

3. Ten cigarettes of Brand A had an average nicotine content of 3.1mm with standard deviation of 0.5mm, while eight cigarettes of Brand B had an average nicotine content of 2.7mm with standard deviation of 0.7mm. Test the difference. (Assumption : two sets of data is independent)