1. STATA

- Command : mean 'var', ci 'var', ttest 'var' == ' H_{0} value'
- For two sample t test : ttest 'var', by('var')
- Interpreting the table in STATA will be covered in the session.

2. Testing Hypotheses for Difference Between Two Means

- Step 1: Determine Appropriate Test

If N_{1} and $N_{2} \geq 20, \overline{x_{1}}-\overline{X_{2}} \sim N\left(\mu_{\overline{x_{1}}}-\overline{x_{2}}, \sigma_{\overline{x_{1}}-\overline{x_{2}}}\right) . \sigma_{\overline{x_{1}}-\overline{x_{2}}}=\sqrt{\frac{S_{1}^{2}}{N_{1}}+\frac{S_{2}^{2}}{N_{2}}}$ If N_{1} or $N_{2}<20,, \overline{x_{1}}-\overline{x_{2}} \sim t\left(\mu_{\overline{x_{1}}-\overline{x_{2}}}, \sigma_{\overline{x_{1}}-\overline{x_{2}}}, N_{1}+N_{2}-2\right)$.
$\sigma_{\overline{X_{1}}-\overline{X_{2}}}=\widehat{\sigma} \sqrt{\frac{1}{N_{1}}+\frac{1}{N_{2}}}, \widehat{\sigma}($ pooled variance $)=\sqrt{\frac{\left(\mathrm{S}_{1}^{2}\left(\mathrm{~N}_{1}-1\right)\right)+\left(\mathrm{S}_{2}^{2}\left(\mathrm{~N}_{2}-1\right)\right)}{\mathrm{N}_{1}+\mathrm{N}_{2}-2}}$

- Step 2: Formulate the Null Hypothesis
$\mathrm{H}_{0}: \mu_{1}=\mu_{2}$ or $\mu_{1}-\mu_{2}=0 ; \mathrm{H}_{\mathrm{A}}: \mu_{1} \neq \mu_{2}$ or $\quad \mu_{1}>$ or $<\mu_{2}$
- Step 3: Calculate the Test Statistic

$$
\mathrm{Z}_{\mathrm{obs}} \text { or } \mathrm{t}_{\mathrm{obs}}=\frac{\left(\overline{\mathrm{x}_{1}}-\overline{\mathrm{x}_{2}}\right)-\left(\mu_{\overline{\mathrm{x}_{1}}}-\overline{\mathrm{x}_{2}}\right)}{\left.\sigma_{\overline{\bar{x}_{1}}}\right)}
$$

- Step 4: Find Critical Value (95\%)
$\mathrm{Z}_{\text {crit }}=1.96$ (two tailed test. For one tail : 1.65, sign is important)
$\mathrm{t}_{\text {crit }}$: Find a value with DoF and $\alpha=0.05$
- Step 5: Compare Critical to Observed
- Step 6: Decide on Null Hypothesis Reject H_{0}, and Interpretation.

II. Problems

1. Fill in the blank (?)

trest realrinc $=19000$	
One-sample t test	
Variable Obs Mean Std. Err. Std. Dev.	[95\% Conf. Interval]
\|realrinc $688921833.32 \quad 788.6$?
mean $=$ mean(realrinc)	$\mathrm{t}=3.5929$
Ho: mean $=19000$	DoF $=688$
Ha: mean < 19000 Ha: mean ! 19000	Ha: mean > 19000
$\operatorname{Pr}(\mathrm{T}<\mathrm{t})=0.9998 \quad \operatorname{Pr}(\mathrm{~T}>\mathrm{t})=0.0004$	$\operatorname{Pr}(\mathrm{T}>\mathrm{t})=0.0002$

2. Fill in the blank, and what is the result of the test

Two-sample t test with unequal variances				[95\% Conf. Interval]
Group Obs	Mean	Std. Err.	Std. Dev.	
0351	16850.78	899.9806	16861.13	15080.7318620 .83
338	27007.51	1248.421	22951.94	24551.8329463 .18
combined $68921833.32 \quad 788.6$ 20699.81				20284.9723381 .68
Diff: (? mean) (? Std.err)				
diff $=$ mean $(0)-\operatorname{mean}(1)$				$\mathrm{t}=(\mathrm{l}$? $)$

3. Ten cigarettes of Brand A had an average nicotine content of 3.1 mm with standard deviation of 0.5 mm , while eight cigarettes of Brand B had an average nicotine content of 2.7 mm with standard deviation of 0.7 mm . Test the difference. (Assumption : two sets of data is independent)
