I . Short Review

1. Confidence Interval
$\mathrm{CI}=\overline{\mathrm{X}} \pm \mathrm{Z}($ or t$) \sigma_{\mathrm{X}}:$ Calculate σ_{X}, Find $\mathrm{Z}($ ort t$)$, and Interpretation.
If $\mathrm{N}<30$, use t value (Degree of Freedom and $\frac{\alpha}{2} ; \alpha=1$ - Confidence Interval)
2. Hypothesis Test

- The difference between true mean or proportion and sample mean or proportion is statistically significant ? => Test H_{0}
- Null Hypothesis $\left(\mathrm{H}_{0}\right) ; \mathrm{H}_{0}: \mu=\mu_{0}$
- Alternative Hypothesis(Ha or ${ }_{1, \text { etc. }}$) ; Ha : $\mu \neq($ or $>,<) \mu_{0}$
- Reject H_{0} : we believe, at a certain level of statistical significance, that the relationship is not due to sampling error and really reflects a true difference in the population.
- Type I error : Reject the null when it is true. Type Пerror : Fail to reject the null when it is false.
- Level of significance : the probability of making a Type I error ; $\alpha=0.05$.
- Test

Step1: Determine Appropriate Test Statistic
Step2 : Formulate the Null Hypothesis. $\mathrm{H}_{0}: \mu=\mu_{0}$
Step3 : Calculate Appropriate Test Statistics(Z or t) / Step 4 : Find Critical Value
Step 5: Compare $\mathrm{Z}_{\mathrm{obs}}($ or t$)$ to $\mathrm{Z}_{\text {crit }}$ (or t$)$ and Decision
Step 6 : Interpretation : At the 0.05 level of significance, we can rule out sampling error as the only cause for difference \sim.
3. Test for Proportion

- $\mathrm{N} \geq 200: \mathrm{Z}$ test, otherwise binimial distribution test
- $\mathrm{H}_{0}: \pi=\pi_{0}$ (π : population proporion, p : sample proportion)
$-\mathrm{Z}=\frac{\mathrm{p}-\mu_{\pi}}{\sigma_{\pi}} \quad ; \sigma_{\pi}=\sqrt{\frac{\pi(1-\pi)}{\mathrm{N}}}$

II. Problems

1. In our factory, the measurement machine was out of order. So it got repaired. After that, we used the machine, and we had 5 sample data $78,83,68,72,88$. Before a trouble, the mean of measurement was 70 . Can we conclude the machine is same as before?
2. The\# of birth defect of city A in Texas was 68 among 36000 in 2009 . The birth defect rate of Texas was 0.0016 . Can we say the rate of birth defect in city A was more or less than the average rate of Texas?
