I . Short Review

1. Z score

- $Z=\frac{X-\mu}{\sigma}, \frac{x-\bar{X}}{s}$

$$
\therefore \quad \mathrm{X}=\mu+\mathrm{Z} \sigma \quad, \quad \overline{\mathrm{X}}+\mathrm{Zs}
$$

- Look at the table in your textbook. ((b) and (c) column) ; Proportions are not percentages.
- $\operatorname{Pr}(x \geq a), \operatorname{Pr}(a \leq x \leq b)$, What value in $95 \%, 95$ percentile and etc. : to be covered in session

2. Sampling Distribution of Means

- $\mu_{\overline{\mathrm{x}}}$: Sample mean is average of means ($\overline{\mathrm{X}}_{1}, \overline{\mathrm{X}}_{2}, \overline{\mathrm{X}}_{3} \ldots \ldots$)
- Three properties: (1) the sampling distribution of means approximates the normal curve. (the central limits theorem, $n \geq 30$) (2) $\mu_{\bar{x}}=\mu$ (3) $\sigma_{\overline{\mathrm{x}}}($ or standard error of $\overline{\mathrm{X}})<\sigma: \sigma_{\overline{\mathrm{x}}}=\frac{\sigma}{\sqrt{n}}, \widehat{\sigma_{\overline{\mathrm{x}}}}\left(s_{\overline{\mathrm{X}}}\right)=\frac{\mathrm{s}}{\sqrt{\mathrm{n}}}(\operatorname{not} \mathrm{n}-1)$
$-\mathrm{Z}=\frac{\mathrm{X}-\mu_{\overline{\mathrm{x}}}}{\sigma_{\overline{\mathrm{x}}}}=\frac{\mathrm{X}-\mu_{\overline{\mathrm{x}}}}{\frac{\sigma}{\sqrt{n}}}$
- Sample size : if $\mathrm{n} \geq 30$, normal distribution. We can use Z score However, if $\mathrm{n}<30$, we should use "(student) t -distribution"
: Look at the table. α : level of significance.(0.5), $\mathrm{df}:$ degree of freedom $: \mathrm{n}-1$.

3. Confidence Interval

- $\mathrm{CI}: \overline{\mathrm{X}} \pm \mathrm{Z}$ (or t$) \sigma_{\overline{\mathrm{x}}}:$ For 95% confidence interval, $\mathrm{Z}=1.96$

For t score, look for t score in the table.
$-\mathrm{n} \hat{\imath} \rightarrow \sigma_{\overline{\mathrm{x}}} 』 / \sigma_{\overline{\mathrm{x}}} \hat{\imath} \rightarrow \mathrm{CI} \hat{\imath}$

	Obs	Mean	Variation	Standard deviation
Sample	X	$\overline{\mathrm{X}}$	s^{2}	s
Population	X	μ	σ^{2}	σ
Distribution of Sample mean	$\overline{\mathrm{X}}$	$\mu_{\overline{\mathrm{x}}}$	$\sigma_{\overline{\mathrm{x}}}{ }^{2}$	$\sigma_{\overline{\mathrm{x}}}$

I. Problems

<Examples in Lecture Note>
(1) Using the IQ example, with a population average $=100$ and population standard deviation $=15$, calculate the probability that a randomly selected person would have:

1. An IQ of 115 or more
2. An IQ between 110 and 120
3. An IQ between 80 and 90
4. An IQ between 70 and 100

- The probability that randomly selected 2 people, having IQ of 110 or more. (each selection is independent).
(2) Using the assumptions that the true mean of hourly wage for UTD students is $\$ 6$, with a standard deviation of $\$ 0.50$, what is the probability of the following events:

1. Finding a sample mean of $\$ 7$ or more with a sample size of 25
2. Finding a sample mean of $\$ 7$ or more with a sample size of 100
3. Finding a sample mean of between $\$ 4.50$ and $\$ 5.50$ with a sample size of 100 ?

<Session Problem>

(1) Test scores' population variance is 25 , and random sample of 50 produced a mean of 82

- Find a 90% confidence interval
- We just have 25 observations with $\sum \mathrm{f}(\mathrm{x}-\overline{\mathrm{x}})^{2}=384$, but this is not population. Sample mean is 82 . Find a 95% confidence interval.

