I. Short Review

1. Z score

$$- Z = \frac{X - \mu}{\sigma} , \frac{X - \overline{X}}{s}$$
$$\therefore X = \mu + Z\sigma , \overline{X} + Zs$$

- Look at the table in your textbook. ((b) and (c) column); Proportions are not percentages.
- $Pr(x \ge a)$, $Pr(a \le x \le b)$, What value in 95%, 95 percentile and etc. : to be covered in session
- 2. Sampling Distribution of Means
 - $\mu_{\overline{x}}$: Sample mean is average of means $(\overline{X}_1, \overline{X}_2, \overline{X}_3 \dots)$
 - Three properties : (1) the sampling distribution of means approximates the normal curve. (the central limits theorem, n≥30) (2) $\mu_{\bar{x}} = \mu$ (3) $\sigma_{\bar{x}}$ (or standard error of \bar{X}) < σ : $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$, $\widehat{\sigma_{\bar{x}}}$ ($s_{\bar{x}}$) = $\frac{s}{\sqrt{n}}$ (not n-1)

$$- \quad Z \quad = \; \frac{X - \, \mu_{\overline{x}}}{\sigma_{\overline{x}}} \; = \; - \frac{X - \, \mu_{\overline{x}}}{\frac{\sigma}{\sqrt{n}}}$$

- Sample size : if n ≥ 30, normal distribution. We can use Z score However, if n < 30, we should use "(student) t-distribution"
 : Look at the table. α: level of significance.(0.5), df : degree of freedom : n-1.
- 3. Confidence Interval
 - CI: $\overline{X} \pm Z(\text{or t})\sigma_{\overline{x}}$: For 95% confidence interval, Z = 1.96 For t score, look for t score in the table.
 - $\label{eq:states} \begin{array}{ccc} & n \ \widehat{\upsilon} \twoheadrightarrow & \sigma_{\overline{x}} \ \widetilde{\upsilon} & / & \sigma_{\overline{x}} & \widehat{\upsilon} \twoheadrightarrow CI \ \widehat{\upsilon} \end{array}$

	Obs	Mean	Variation	Standard
				deviation
Sample	Х	X	s^2	S
Population	Х	μ	σ^2	σ
Distribution of Sample mean	X	$\mu_{\overline{x}}$	$\sigma_{\overline{x}}^{2}$	$\sigma_{\overline{x}}$

Π. Problems

<Examples in Lecture Note>

- (1) Using the IQ example, with a population average =100 and population standard deviation =15, calculate the probability that a randomly selected person would have:
 - 1. An IQ of 115 or more
 - 2. An IQ between 110 and 120
 - 3. An IQ between 80 and 90
 - 4. An IQ between 70 and 100

- The probability that randomly selected 2 people, having IQ of 110 or more. (each selection is independent).

- (2) Using the assumptions that the true mean of hourly wage for UTD students is \$6, with a standard deviation of \$0.50, what is the probability of the following events:
 - 1. Finding a sample mean of \$7 or more with a sample size of 25
 - 2. Finding a sample mean of \$7 or more with a sample size of 100
 - 3. Finding a sample mean of between \$4.50 and \$5.50 with a sample size of 100?

<Session Problem>

- (1) Test scores' population variance is 25, and random sample of 50 produced a mean of 82
 Find a 90% confidence interval
 - We just have 25 observations with $\sum f(x \bar{x})^2 = 384$, but this is not population. Sample mean is 82. Find a 95% confidence interval.